
International Journal of Theoretical Physics, Vol. 37, No. 5, 1998

Square-Root Klein± Gordon Operator and Physical
Interpretation

Kh. Namsrai1

Received July 14, 1997

The square-root operator approach to relativistic quantum field theory is proposed.
It is shown that an exact solution of this operator equation is a spinor with random
mass distribution. A physical (potential) origin and gauge-invariant elec-
tromagnetic interaction of this new kind of particle are studied. Spreadout particles
over mass value and space-time variables are also considered.

A long time ago Wey (1927) proposed to use a fractional power

! m2 2 ¹ 2 of the modified Helmholtz operator (m2 2 ¹ 2) in the relativistic

problem. Weyl’ s idea of defining the operator corresponding to a symbol

(Kohn and Nirenberg, 1965a; Weyl, 1927, pp. 27±28) was very similar to

the concept of modern pseudodifferential operators (Kohn and Nirenberg,

1965b; see also Treves, 1980). Unfortunately Weyl did not develop a complete

theory. The square-root operator approach to relativistic quantum theory

was subsquently abandoned and new approaches were tried leading to the

Klein±Gordon and the Dirac equations.

Recently, the square-root operator has been relevant in modern particle

theory (Smith, 1993), in particular, in applications of the Bethe±Salpeter

equation to bound states of quarks (Castorina et al., 1984; Friar and Tomusiak,

1984; Nickisch et al., 1984), in problems of binding in very strong fields

(Hardekopf and Sucher, 1985; Papp, 1985), and in relativistic strings (bosonic)

(Kaku, 1988; Fiziev, 1985). In this paper, we propose a very simple method

allowing us to work with the square-root operator and to give its physical

interpretation. Let us consider the Lagrangian form
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L0
w 5 w * (x) ! m2 2 N w (x) (1)

where w (x) is some field operator whose nature for now is unknown. In

accordance with the general rule (’ t Hooft and Veltman, 1973), the propagators
are minus the inverse of the operator found in the quadratic term (1). That is,

DÄ (p) 5 2
1

! m2 2 p2 2 i e
(2)

Further, making use of the Dirac relation and the Feynman parameter method,

one gets after changing integration variable

DÄ (p) 5 2
1

(m 2 pÃ)1/2(m 1 pÃ)1/2 5 #
m

2 m

d l r ( l )SÄ ( l ,pÃ) (3)

where

SÃ( l , pÃ) 5
1

i

l 1 pÃ

l 2 2 p2 2 i e
(4)

is the spinor propagator with mass l in momentum space and

r ( l ) 5
1

p
(m2 2 l 2) 2 1/2 (5)

In (3) we have used G (1/2) 5 ! p . The function (5) possesses remarkable

properties:

#
m

2 m

d l r ( l ) 5 1, #
m

2 m

d l l r ( l ) 5 0, #
m

2 m

d l l 2 r ( l ) 5
1

2
m2

(6)

Equalities (3) and (6) mean that the propagator of the field w (x) defined by

the Lagrangian (1) is exactly equal to the spinor propagator with random

mass whose distribution is given by (5). In general, relation (3) solves the

square-root differential operator problem in quantum field theory. Indeed, it
is easily seen that solutions of the equations

! m2 2 N w (x) 5 0, ! m2 2 N w *(x) 5 0 (7)

can be represented in the form

w (x) 5 #
m

2 m

d l r ( l ) c (x, l ), w *(x) 5 #
m

2 m

d l r ( l ) c (x, l ) (8)



Square-Root Klein± Gordon Operator 1533

By definition the propagator of this field is

D(x 2 y) 5 ^ 0 | T{ w (x) w *( y)} | 0 &

5 #
m

2 m #
m

2 m

d l 1 d l 2 r ( l 1) r ( l 2) ^ 0 | T{ c (x, l 1) c (y, l 2)} | 0 & (9)

It is natural to assume that

^ 0 | T{ c (x, l 1) c (y, l 2)} | 0 & 5 d ( l 1 2 l 2)S(x 2 y, l 1)/ r ( l 1) (10)

where S(x, l ) is the spinor propagator of mass l . Thus equation (9) yields

relation (3), as it should. As seen below, the construction procedure for

this extended theory is similar to the local one. Instead of (1) we use the

Lagrangian density

L0
c 5 N H i

2 F c (x, l 1) - Ãc (x, l 2) 2
- c (x, l 1)

- x n
g n c (x, l 2) G 2 Lo

l c J (11)

or

L0
c 5 2 N{ c (x, l 1)( 2 i - Ã) c (x, l 2) 1 Lo

1 c } (12)

where we use the notation

Lo
1 c 5 C (x, l 1)U( l 1, l 2) C (x, l 2), C (x, l 1) 5 (0, c (x , l 1))

N 5 #
m

2 m #
m

2 m

d l 1 d l 2 r ( l 2) r ( l 2), - Ã5 g n -
- x n

C (x, l 2) 5 1 c (x, l 2)

0 2 , U( l 1, l 2) 5 1 0 l 1

l 2 0 2
Equations of motion can be obtained from the action

A 5 # d 4x L0
c (x)

by using independent variations over fields c (y, l ) and c (y, l ) with the

differences d Lo
1 c / d ; c (y, l ) and d (Lo

1 c )T/ d c (y, l ):

#
m

2 m

d l r ( l )(i - Ã2 l ) c (x, l ) 5 0,

#
m

2 m

d l r ( l ) 1 i - c (x, l )

- x n g n 1 l c (x, l ) 2 5 0 (13)

Here we have used the obvious relations
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d c (x, l i)

d c (y, l )
5

d c (x, l )

d c (y, l )
5 d (4)(x 2 y) d ( l i 2 l )

and the definition

(Lo
1 c )T 5 c (x, l 1)U

T( l 1, l 2) C (x, l 2)

Let us introduce an electromagnetic interaction into this scheme. In order to

ensure invariance of the Lagrangian (12) with respect to the local gauge

transformation

c 8(x, l ) 5 eief(x) c (x, l ) (14)

c 8(x, l ) 5 e 2 ief(x) c (x, l )

it should be introduced into the gauge field A m (x) with the transformation rule

A8m (x) 5 A m (x) 1
- f

- x m (15)

The standard procedure of changing - m c ® ( - m 2 ieA m ) c in (12) leads for

our case to the interaction Lagrangian

Lin(x) 5 eN{ c (x, l 1)AÃ(x) c (x, l 2} (16)

where AÃ5 g m A m (x). With (16) the S-matrix can be constructed by the

usual rule:

S 5 Expec
{ l i}

T exp H # d4x Lin(x) J (17)

where the symbol T is the so-called T-product or T*-operation and Expec

means to take the expectation value over variables l i. Matrix elements of

the S-matrix (17) are defined as products P i Þ j D(xi 2 xj ) g m
i with g m

i matrix

coefficients, where D(x) is given by (9). In our case, random variables l i

entering into the definition of the spinor propagator with mass l i are not
independent and have strong correlations between them. In other words, the

functions S(x, l i) are some stochastic processes over the variable l i. Expecta-

tion values of these processes are defined by the requirement of the gauge

invariance of the theory and possess some properties such as white noise. For

example, at least for connected diagrams in the momentum space, one assumes

Expec{DÄ (p)} 5 #
m

2 m

d l r ( l )SÄ (pÃ, l )

Expec{ g v1DÄ ( p1) g v2DÄ ( p2) g v3}

5
1

2 #
m

2 m #
m

2 m

d l 1 d l 2 r ( l 1) r ( l 2)
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3 { g v1SÄ ( pÃ1, l 1) g v2SÄ ( pÃ2, l 2) g v3} 3 H d ( l 1 2 l 2)

r ( l 2)
1

d ( l 1 2 l 2)

r ( l 1) J
5 #

m

2 m

d l r ( l ){ g v1SÄ ( pÃ1, l ) g v2SÄ ( pÃ2, l ) g v3} (18)

Expec{ g n 1DÄ ( p1) g n 2DÄ ( p2) g n 3DÄ ( p3) g n 4}

5
1

3! #
m

2 m

d l 1 r ( l 1) . . . #
m

2 m

d l 3 r ( l 3){ g n 1SÄ ( pÃ1, l 1) l n 2SÄ ( pÃ2, l 2) g n 3SÄ ( pÃ3, l 3) g n 4}

3 H d ( l 1 2 l 2) d ( l 2 2 l 3)

r ( l 1) r ( l 3)
1

d ( l 1 2 l 2) d ( l 1 2 l 3)

r ( l 2) r ( l 3)
1 . . . J

5 #
m

2 m

d l r ( l ){ g n 1 SÄ ( pÃ1, l ) g n 2SÄ ( pÃ2, l ) g n 3SÄ ( pÃ3, l ) g n 4}

etc. In the general case, one gets

Expec{ g n 1DÄ ( p1) g n 2 . . . g n nDÄ ( pn) g h n 1 1}

5 #
m

2 m

d l r ( l ){ g n 1SÄ ( pÃ1 l ) g n 2 . . . g n nSÄ ( pÃn l ) g h n 1 1} (19)

Definition (19) grants the gauge invariance of the theory. Indeed, in the
language of perturbation theory (or Feynman diagrammatic techniques), the

gauge invariance of the ª square-rootº QED means that every matrix element

of the S-matrix defining the concrete electromagnetic processes has a definite

structure, and algebraic relations exist between them. In particular, in the

momentum representation, the so-called vacuum polarization diagram in the

second order of perturbation theory has the form

P Ä m n (k) 5 (k m k n 2 g m n k
2) P (k2) (20)

In addition, the relation

- S Ä ( p)

- p m
5 2 G Ä m (p, q) | q 5 0 (21)

exists between the vertex function G Ä m (p, q) and the self-energy of the ª sqr-

electronº S Ä ( p). The relation (21) generalizes the Ward±Takahashi identity in

QED. Here, in accordance with (18) and (19), we have

S Ä ( p) 5
2 ie2

(2 p )4 #
m

2 m

d l r ( l ) # d 4k n (k2) g m SÄ ( pÃ2 kÃ, l ) g m (22)

and
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G Ä m ( p, q) 5
ie2

(2 p )4 # d 4k n (( p 2 k)2) Expec { g n DÄ (q 1 k) g m DÄ (k) g n }

5
ie2

(2 p )4 #
m

2 m

d l r ( l ) # d 4k n (( p 2 k)2) g n SÄ (qÃ1 kÃ, l ) g m SÄ (kÃ, l ) g n (23)

where SÄ ( pÃ, l ) 5 ( l 2 pÃ) 2 1 and n (k2) 5 ( 2 k2 2 i e ) 2 1. For the proof of the
relation (21) consider the identity

- SÄ ( pÃ, l )

- p m
5 SÄ (pÃ, l ) g m SÄ (pÃ, l ) (24)

Here the vertex g m is given by

g m 5 2
-

- p m
DÄ 2 1( p), DÄ 2 1( p) 5 #

m

2 m

d l r ( l )( l 2 pÃ)

This definition follows from the identity

Expec{DÄ ( p)DÄ 2 1( p)} 5 #
m

2 m #
m

2 m

d l 1 d l 2 r ( l 1) r ( l 2)SÄ ( pÃ1, l 1)SÄ
2 1( pÃ2, l 2)

3
d ( l 1 2 l 2)

r ( l 1)

5 #
m

2 m

d l r ( l )SÄ ( pÃ, l )SÄ 2 1( pÃ, l )

5 #
m

2 m

d l r ( l ) 5 1

Further, it is easy to verify the identity (21) by differentiating (22) over p m

and making use of the equality (24), and choosing other momentum variables

in (23) and assuming q 5 0, p8 5 p 1 q 5 p. Relations of the type q m G Ä m ( p,
q) | p82 5 p2 5 l 2 5 0 follow from the definition

q m Expec{DÄ ( p1) g m DÄ ( p2)}

5 q m #
m

2 m #
m

2 m

d l 1 d l 2 r ( l 1) r ( l 2)

3 SÄ ( pÃ1, l 1) g m SÄ ( pÃ2, l 2)
d ( l 1 2 l 2)

r ( l 1)

5 DÄ ( p1) 2 DÄ ( p2)
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5 #
m

2 m

d l r ( l )[SÄ ( pÃ1, l ) 2 SÄ ( pÃ2, l )]

if q 5 p1 2 p2.

Now let us demonstrate the gauge invariance of the photon self-energy

diagram in the ª square-rootº QED; its matrix element is given by

P Ä m n (K) 5 e2 Expec H # dnp Tr[ g m DÄ ( p 1 k) g n DÄ ( p)] J
5 e2 #

m

2 m

d l r ( l ) # dnp Tr[ g m SÄ ( pÃ1 kÃ, l ) g n SÄ ( pÃ, l )] (25)

Here we have used the n-dimensional gauge-invariant regularization proce-

dure due to ’ t Hooft and Veltman (1972) and definition (18). After some

calculations we obtain the same form as (20),

P m n (k) 5
8i p n/2

G (2)
G 1 2 2

1

2
n 2 (k m k n 2 k2g m n ) #

m

2 m

d l r ( l )

3 #
1

0

dx ? x(1 2 x)[ l 2 2 k2x(1 2 x)]n/2 2 2 (26)

which is manifestly gauge invariant.

Now we attempt to shed light on the physical origin of the appearance
of an extended object (8) over random mass with propagator (3). There is a

common rule that in the static limit the propagator of force-transmitting

quanta is related to the potential of this field. We know that the propagators

of the photon and the scalar particle with mass m are defined by inverse

Fourier transforms of the corresponding Coulomb and Yukawa potentials. It

turns out that the potential origin of the square root operator field arises from
dipolelike extended objects. For example, the usual electric dipole potential

Ud(r) 5
ed cos u
4 p e 0r

2 (27)

is associated with the Fourier transform of minus the propagator 2 DÄ 0
d 5

1/ ! p2, the four-dimensional version of which is

DÄ 0
d(p) 5 2

1

! 2 p2
5 i

pÃ

p2 (28)

The latter means that the dipole field may emit or absorb a ª nonlocal photonº

or more precisely a neutrino-like particle. For definiteness, we call it a photino,
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like the fermion partner of the photon in the supersymmetric theory (Bailin

and Love, 1994). By analogy with the introduction of the Yukawa potential,

the short-distance modification of the dipole potential

Um
d (r) 5

eL

2 p 2

m

r
K1(mr) (L 5 p d/2) (29)

results minus the propagator 2 DÄ m
d ( p) 5 DÄ ( p) in (2). Here K1(x) is the modi-

fied Bessel function. The appearance of extended objects over space-time

variables

w l(x) 5 # d4y Km
l (N) d (4)(x 2 y) w (y) 5 # d4yKm

l (x 2 y) w ( y) (30)

in (8) is caused by a more general potential

U m
dl(r) 5

eL

2 p 2

m

! r2 1 l2
K1(m ! r2 1 l2) (31)

where l is a parameter of the theory; we call it the fundamental length. The

propagator of the field (30) in momentum space is given by

DÄ l
m( p) 5 2

1

! m2 5 p2 2 i e
exp( 2 l ! m2 2 p2) (32)

in equation (30)

K m
l (x) 5

l

8 p 2 ! 2

p
m5/2 K5/2 1 m ! 1

4
l2 2 x2 2

3 1 14 l2 2 x2 2
2 5/4

, x2 5 x2
0 2 x2 (33)

is a generalized function and its Fourier transform in the Euclidean space reads

KÄ m
l ( pE) 5 # d 4xE e 2 ipExE K m

l (xE) 5 exp F 2
l

2
! m2 1 p2

E G (34)

For the propagator (32) the Mellin representation

DÄ l
m(p) 5

l

2i #
2 b 2 i `

2 b 1 i `

d j
y ( j )

sin p j
[l2(m2 2 p2)] j (35)

v( j ) 5
1

cos p j
1

G (2 1 2 j )
(1 # b , 1/2) (36)

is valid.
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The square-root operator field theory with the propagator (35) will be

studied elsewhere. The requirement of invariance of the Lagrangian (12) with

respect to nonlocal gauge transformations [instead of (14) and (15)]

c 8(x, l ) 5 exp F ie # d 4y K 0
l (x 2 y) f ( y) G c (x, l )

c 8(x, l ) 5 exp F 2 ie # d 4y K 0
l (x 2 y) f (y) G c (x, l ) (37)

A8m (x) 5 A m (x) 1
- f

- x m

gives rise to the introduction of the nonlocal photon field

Al
m (x) 5 # d 4y K 0

l (x 2 y)A m (y) (38)

in the square-root operator formalism. Thus the interaction Lagrangian (16)
acquires the nonlocal character

Ll
in(x) 5 eN{ c (x, l 1)AÃl(x) c (x, l 2} (39)

Construction of a such theory is similar to nonlocal quantum electrodynamics

for a pointlike spinor in the Efimov theory (Efimov, 1977; Namsrai, 1986).

In expressions (37) and (38) the nonlocal generalized function K 0
l (x) is

given by

(K 0
l (x) 5

3l

8 p 2 1 14 l2 2 x2 2
2 5/2

(40)

the Fourier transform of which is equal to

KÄ 0
l ( p) 5 exp 1 2 l

2
! p2 2 (41)

The physical meaning of (40) is the distribution of the ring (closed string)

charge e of the spinor field c (x, l ) in x space. Thus, the propagator of the
nonlocal photon takes the form

Dl
m n (x 2 y) 5

2 g m n

(2 p )4i # d 4k
[KÄ 0

l (p)]2 e 2 ik(x 2 y)

2 k2 2 i «
(42)

The nonlocal theory with the interaction Lagrangian (39) and propagators

(3) and (42) is gauge invariant by construction. Investigation of the matrix

elements for the S-matrix in this theory will be presented elsewhere.
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Finally, we mention that the square-root operator field equations (7)

with the solutions (8) and the propagators (3) may be able to shed light on

the physical origin of mass and indicate that in the microworld the mass
value of particles is not quantized, but takes stochastic distributional character

through the mechanism of their generation. This is a problem for future study.
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